
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 05 –

References

Dr. Katherine Gibson

Based on slides by Chris Marron at UMBC

www.umbc.edu

Last Class We Covered

• Variables
– Values

– Addresses

• Pointers
– Creating

– Initializing

– Dereferencing

• Pointers and Functions

– “Returning” more than one value

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To review and better understand pointers

• To discuss how pointers are used to pass
entire arrays to functions

• To learn about references

4

www.umbc.edu

Review of Pointers

www.umbc.edu

Visualization of Pointers

6

int x = 5;

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is ? */

variable name x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 5 0x7f96c ?

www.umbc.edu

Visualization of Pointers

7

int x = 5;

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is ? */

variable name x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 5 0x7f96c ?

www.umbc.edu

Visualization of Pointers

8

int x = 5;

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is ? */

variable name x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 5 0x7f96c ?

www.umbc.edu

Visualization of Pointers

9

int x = 5;

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is ? */

variable name x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 5 0x7f96c ? 5

5

www.umbc.edu

Visualization of Pointers

10

int x = 5;

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is 5 */

x = 3; /* y is still 5 */

y = 2; /* x is still 3 */

variable name x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 5 0x7f96c 5 2 3

www.umbc.edu

Visualization of Pointers

11

int x = 5;

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is 5 */

x = 3; /* y is still 5 */

y = 2; /* x is still 3 */

variable name x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 3 0x7f96c 2

www.umbc.edu

Pointers and Arrays and
Functions

www.umbc.edu

Arrays and Functions

• Because arrays are pointers, they are
always passed by address to a function

• What does this mean?

–Program does not make a copy of an array

–Any changes made to an array inside a
function will remain after the function exits

13

www.umbc.edu

Array Elements vs Arrays

• Passing one element of an array is
still treated as pass by value

• For example

– classNums[0] is a single variable of type
 int, and is passed to the function by value

– classNums is an array, and is passed to
the function by its address

14

www.umbc.edu

C-Strings and Functions

• Reminder!

• C-style strings are arrays of characters

• So functions always pass C-Strings by…

–Address!

• Pass to a function by name only

– Just like any other array

15

www.umbc.edu

C-Strings as Arguments

• In a function prototype, that looks like this:

/* function takes a char pointer */

void toUpper (char *word);

char str[] = "hello";

toUpper (str);

• This is also a valid function prototype:
void toUpper (char word[]);

16

www.umbc.edu

Passing Variables: 3 Options

www.umbc.edu

Review: Passing by Value

• The “default” way to pass variables to functions

// function prototype

void printVal (int x);

int x = 5;

int *xPtr = &x;

printVal(x); // function call

printVal(*xPtr); // also valid call

18

www.umbc.edu

Review: Passing by Address

• Uses pointers, and uses * and & operators

// function prototype

void changeVal (int *x);

int x = 5;

int *xPtr = &x;

changeVal(&x); // function call

changeVal(xPtr); // also valid call

19

www.umbc.edu

Third Option: References

• References are

– Safer than pointers

– Less powerful

–More restricted in usage

• Use the ampersand (&) for declaration

int &xRef = x;

20

www.umbc.edu

References

• Once created, references don’t need to use
the ampersand or asterisk

– They look like “normal” variables

–But behave (somewhat) like pointers

• References must be initialized at declaration

• References cannot be changed

• References can be treated as another
“name” for a variable (no dereferencing)

 21

www.umbc.edu

Functions and References

• Functions that take in references (instead of
addresses) look almost identical to functions
that take in “normal” values

void changeByRef (int &x){

 x = x + 1;

}

• Prototype changes, but function body looks
like that of a function that takes in a value

22

www.umbc.edu

Calling Reference Functions

• Calling also looks similar to functions “by value”

void changeByRef(int &x); //prototype

int x = 5;

int &xRef = x; //create reference

changeByRef(x); //function call

changeByRef(xRef); //also valid call

23

www.umbc.edu

Downsides to References

• References are static

–Once initialized, they are forever tied
to the thing that they reference

• Using them looks identical to using a value

– That’s a good thing though? It’s easier!

–But it can also be confusing

• May think you’re passing by value, and that the
contents of the variable won’t be changed

24

www.umbc.edu

LIVECODING!!!

www.umbc.edu

Announcements

• Project 1 has been released

• Found on Professor’s Marron website

• Due by 9:00 PM on February 23rd

• Get started on it now!

• Next time: Classes and Objects

26

www.umbc.edu

Practice Problem

• Write a function called makeChange() that
takes in a value in cents, represented as an int
and then calculates the number of quarters,
dimes, nickels, & pennies needed for change

• The function can take in multiple arguments

• The function does not return anything

• The cents value is guaranteed to be correct

–A valid integer, positive, etc.
27

